
CHAPTER 3 

U�REPLICATED LI�EAR FU�CTIO�AL RELATIO�SHIP 

MODEL 
 

 

This chapter proposes an initial attempt to solve the three issues in the existing 

ISMs as mentioned in Section 2.4, namely (i) perfect reference, (ii) bivariate case, and 

(iii) global versus localized measure. The discussion provides a clear direction for the 

study to develop a new unified similarity measure for one-to-one image comparison. 

The main purpose in this chapter is to develop a new similarity measure based on the 

unreplicated linear functional relationship (ULFR) model. This new similarity measure 

tries to overcome the first constraint by introducing a new concept of imperfect 

reference image. Some background readings of linear functional model and reasons not 

to choose other regression models and correlation coefficients are discussed. The new 

similarity measure defined by coefficient of determination for the ULFR model is 

derived and its properties will be discussed. 

 

 

3.1 Why Some Regression Models Are �ot Suitable? 

 As we noted in Table 2.1, there are some regression models or correlation 

coefficients that has been used for one-to-one image comparisons. Examples of 

application are the simple linear regression (Nielsen et al., 1997), multiple linear 

regression (Chang & Tan, 2006), canonical correlation (Tan & Chang, 2006) and 

ordinal correlation (Avcibas, 2002; Cramariuc et al., 2000; Bhat & Nayar, 1998). On the 

other hand, logistic regression, multinomial logistic regression and non-linear regression 

are the examples in which these models have not been used for comparing two images. 

Even though we have learnt from the literature review that performance indicators based 

on correlation measures generally perform better than other Statistical-based measures, 
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they are still not considered the three issues mentioned in previous chapter. This section 

will show the reasons why some regression models and its corresponding correlation or 

coefficient of determination are inadequate for comparing two images. 

 Some existing or potential regression models and its correlations are 

summarized below: 

(i) Simple linear regression model is i i iy xα β ε= + +  and its squared 

correlation or coefficient of determination is defined by 
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(ii) Multiple linear regression model is 1 1 2 2i i i p pi iy x x xα β β β ε= + + + +⋯  and 

its multiple correlation is defined by 
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which is the generalisation of the Equation (3.1). 

(iii) The canonical correlation for the model 1 1 q qV b Y b Y= + +⋯  and 

1 1 p p
W a X a X= + +⋯  is defined by     

2 1 1 ; 1, 2, ,i YY YX XX XY i kλ − −= Σ Σ Σ Σ = …    (3.3) 

(iv) Spearman’s rank Correlation: 
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 where kSRCµ  is the Spearman’s rank correlation of block number µ  and of 

the kth spectral band 

(v) Logistic regression is ( ) 1 1 2 2logit i i p pip x x xα β β β= + + +⋯  and multinomial 

logistic regression is equivalent to fitting n-1 binary logistic regression. 
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There are three methods of deriving the coefficient of determination 

(Maddala, 1983; Menard, 2001): 
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 Table 3.1 compares different regression models and correlations for different 

model properties. Let X and Y represent the reference image and distorted image (the 

image being measured). Note that none of these correlation methods assume that both X 

and Y subject to errors and hence, the need for non-perfect reference was not met. To 

consider a multiple image features, both X and Y must be multivariate. However, it was 

shown that only the canonical correlation met this requirement. Furthermore, the 

squared Pearson correlation, multiple correlation and canonical correlation can be easily 

modified to measure the image quality both globally and locally. However, the logistic 

regression, due to its binary value of Y, it can only be used for global measure or 

localized measure, but not both. Lastly, the Spearman’s rank correlation is a localized 

measure. 
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Table 3.1: Comparing different correlation based metrics. 

  

Squared 

Pearson 

correlation 

Multiple 

correlation 

COD for 

Logistic 

regression 

Canonical 

correlation 

Spearman’s 

rank 

Correlation 

Y subject to error Yes Yes Yes No No 

X subject to error No No No No No 

Multivariate for X No Yes Yes Yes No 

Multivariate for Y No No No Yes No 

Global or 

localized measure 
Both  Both Either Both Localized 

 

 This suggests the need to look for a more suitable relationship model for 

comparing two images. The first attempt is to adapt the error terms into both dependent 

variable and independent variable of a model; meant the reference image and the 

distorted image are both subject to errors. As an initial stage, the unreplicated linear 

functional relationship model and the development of its coefficient of determination is 

discussed in Section 3.3. A complete similarity measure for comparing two images that 

consider all constraint areas will be developed in the next Chapter. 

 

 

3.2 Linear Functional Relationship Models 

Over the centuries, linear regression model has become the central of study for 

many applications to investigate relationship between a response variable and a set of 

explanatory variables. In practice, however, such as engineering, economics, 

psychology, chemistry, biology and others often dealt with a situation where this 

relationship is obscured by random fluctuations associated with both variables (Sprent, 

1969). Fuller (1987) made the same comment where the assumption that the 

explanatory variable can be measured exactly may not be realistic in many situations. 

Such experiences had lead to the development of a new type of linear relationship when 
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both variables are subject to error or so called functional relationship although other 

terms have referred are ‘law-like relationships’, regression with errors in x’, ‘errors-in-

models’ and ‘measurement error models’. 

 

3.2.1. Basic Definition of Unreplicated Linear Functional Relationship Model  

Suppose X and Y are two linearly related unobservable variables 

i F F iY X= +α β      (3.8) 

and the two corresponding random variables x and y are observed with errors δ  and ε  

respectively 

i i i
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= + 
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 1, 2, ,i n= ⋯ .    (3.9) 

It is common to assume that the errors iδ  and iε  are mutually independent and 

normally distributed random variables with ( )2~ 0,i �δ σ  and ( )2~ 0,i �ε τ . This 

implies that 

(i) both errors have mean 0, that is ( ) ( ) 0i iE Eδ ε= = , 1, 2, ,i n= …  

(ii) both errors have constant but different variance, that is 

( ) ( )2 2,i iVar Varδ σ ε τ= = , 1, 2, ,i n= …  

(iii) the errors are uncorrelated, that is  

( ) ( ), 0 ,i j i jCov Covδ δ ε ε= = , ; , 1, 2, ,i j i j n∀ ≠ = …  

( ), 0i iCov δ ε = , , 1,2, ,i j n∀ = …  

Hussin (1997) termed the model (3.8) and (3.9) as the unreplicated linear functional 

relationship (ULFR) model when there is only a single x and y observation for each 

level of i. The model is termed as replicated linear functional relationship (RLFR) 

model for multiple x and y observations at each level of i. Besides, Kendall (1951, 1952) 

formally made a distinction between functional and structural relationship between the 
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two variables. In functional relationship, the unobservable X is a constant or a 

mathematical variable without specific distributional properties, whereas the 

unobservable X is usually assumed to be normally distributed in structural relationship. 

However, in practice, applications using data do not differentiate the functional or 

structural model (Sprent, 1990). 

The log likelihood function is given by 
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When the ratio of the error variances is known, that is λ
σ

σ
2

δ

2

ε = , then the maximum 

likelihood estimators of parameters Fα , Fβ , 2σδ  and Xi are (Hussin, 1997) 
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3.2.2 Historical Remarks In Brief 

Sprent (1969, 1990) had documented a comprehensive overview of the history 

of functional and structural relationships in 1990. The study covered the major 
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developments of the functional and structural relationships for more than a century, 

back to year 1877 to 1987. With a little extra effort, some recent papers were included 

in this study and reviewed the topic from a different perspective.  

 

(i) Study on the error variances 

Adcock (1877, 1878) is the first person who had investigated the problem of 

fitting a linear relationship when both dependent variable and independent variable are 

subject to error (Sprent, 1990). Adcock (1877, 1878) obtained the least squares 

estimation for the slope, Fβ , for a special case of the model (3.8) and (3.9) where the 

two error variances are equal; i.e. 2 2σ τ= . Kummel (1879) extended the result to the 

case where the ratio of the error variances, 
2

2

σ
λ

τ
=  is known. In 1940, Wald (1940) 

dealt with group data for parameters estimation where the n observations are divided 

into q groups of equal size and the errors variance are finite. It was observed that the 

distribution of the errors is not affected by the grouping. 

Furthermore, Lindley (1947) obtained conditions on the error distribution that 

would preserve linearity of regression for the observable random variables. This result 

was linked indirectly to the work by Geary (1949), where assumption concerning the 

error variances can be waived using product-cumulants for parameters estimation. 

However, it is not applicable to normal distribution. 

Madansky (1959) and Moran (1971) reviewed the models using a variety of 

error structures for both single relationships in the two and higher variate case. Many 

anomalies associated with errors assumptions and confidence intervals problems were 

resolved in 1960s and 1970s (Sprent, 1990).  

In an early paper published in 1966, Sprent (1966) used generalized least 

squares for point estimate when there is information on the correlated departures, i.e. 
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δεσ , δδσ  and εεσ . In this case, it is no longer true that i F F iY X= +α β  reduces to 

i F iY X= β . At about the same time, Fisk (1966) and Malinvaud (1966) had separately 

considered some special patterns of correlation of departures in economic situations. 

One example of these departures patterns is when the covariance matrix has the 

following form: 
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Lastly, Chan and Mak (1984) considered heteroscedastic errors in multivariate 

linear functional relationship, in which the error variances and covariances are not 

necessary homogeneous. They applied a modified least squares method to estimate the 

structural parameters of the model. This method does not require the distributional 

assumptions on the errors and it implies that the derived estimating equations are still 

applicable when the errors are not necessarily normal. 

 

(ii) Types of variable X 

An important research direction for functional relationship model is the 

consideration of various types of variable X. In 1901, Pearson (1901) extended 

Adcock’s solution in Equations (3.8) and (3.9) to the multiple (principle component) 

relationship with kiX , 1,2, ,k p= …  with 2 2=σ τ . On the other hand, Reiersol (1945) 

introduced an instrumental variable, that is, variable Z correlated with the true X and Y, 

but independent of the errors. It was further studied by Barnett (1969) in 1969 in a 

structural relationship problem and indicated that the maximum likelihood estimator 

works without further assumptions on the error variance. 
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The Berkson model is a special functional relationship model introduced by 

Berkson (1950) in 1950. In this model, the controlled variable x is fixed a priori at a 

value chosen by the experimenter. On the other hand, Moran (1971) considered a 

special case where 0=α . He showed that the shift of origin to a data determined point 

is not equivalent to fitting a line through a predetermined origin that is not the data 

mean. 

Sprent (1969) discussed the multidimensional functional relationship with a 

single linear functional relationship given by 1 1 2 2i i i p piY X X Xα β β β= + + + +⋯ . There 

is at least one or more independent linear relationships or replication, each represents a 

space of 1p −  dimensions. Ramsay & Silverman (1997) termed this as functional linear 

models for scalar response. Furthermore, Chan & Mak (1983) considered the estimation 

of multivariate linear functional relationships 
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(iii) Types of relationship 

Dent (1935) proposed the geometric mean functional relationship estimator of 

slope 
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where yym , xxm  and xym  are the sample variances and covariance, respectively. The 

estimator in Equation (3.15) is used when assessment of the error variances or their ratio 

is not possible. However, this estimator is generally not consistent. 

There was also interest in considering several simultaneous linear relationships 

between p variates subject to error by Gleser & Watson (1973) considered several linear 

relationships (simultaneous relationships). Sprent (1969) regarded this as multivariate 

regression. These simultaneous relationships frequently occurred in economics and 

physical sciences where it is often involving large measurement errors.  

Instead of linear functional relationship, a non-linear relationships and 

transformation of data may occur in some problems (Bhat & Nayar, 1998). One 

example of the non-linear relationships study was carried out by Huxley (1924). Huxley 

(1924) transformed the data using logarithm and studying the linear relationship 

between the transformed log x and log y in biological studies. In this context, Huxley 

referred it as the “simple allometry relationship”. 

An excellent work on functional data analysis had also been done by Ramsay & 

Silverman (1997). They had considered a wide range of functional linear models which 

including functional canonical correlation analysis, relationship for both response y and 

covariate x are functions as ( ) ( ) ( ) ( ),

X

ii
y t t x t s t dsα β
∧

ϒ

= + ∫ , functional responses with 

multivariate covariates, functional linear models for scalar responses and functional 

linear models for functional responses. 

Several other types of functional relationship had also been studied by Abdul 

Ghapor Hussin since late 1990s. Hussin (1998) considered the unreplicated complex 

linear functional relationship model to analyses the wind direction data in 1998. The 

complex form of the model in (3.8) and (3.9) can be written as 

( ) ( )cos sin cos sinC CY i Y X i X+ = + +α β where ( ) ( )cos sin cos sini i i i ix i x X i X+ = + +δ  
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and ( ) ( )cos sin cos sini i i i iy i y Y i Y+ = + + ε . After that, Hussin (2001) and Hussin & 

Chik (2003) considered the unreplicated linear circular functional relationship model 

where Equation (3.8) replaced by ( )mod 2i F F iY X= +α β π . The former paper discussed 

parameter estimation using the maximum likelihood method, while the latter paper 

focused on the estimation of error concentration for circular functional model.  In 2005, 

Hussin et al. (2005) and Hussin (2005) considered the pseudo-replicates and replicated 

linear circular functional relationship model, respectively. 

Lastly, Ferraty & Vieu (2006) had discussed the functional nonparametric 

regression model together with some practical illustrations such as speech recognition 

and electricity consumption problems. 

 

(iv) Parameter estimations 

In view of the inconsistency problem of ML estimation, a number of studies 

were searching for improved methods on parameter estimation. For instance, Lindley & 

El Sayyad (1968) introduced Bayesian method for parameter estimation and Morton 

(1981) considered unbiased estimating equations using pivotals. Hussin (2005) applied 

the Fisher information matrix of parameters to estimate the variance of the estimated 

parameters. Other related works are generalized MLE (Chan & Mak, 1984), modified 

estimating equation (Buonaccorsi, 1996), the use of grouping in the bivariate case 

(Wald, 1940) and Karni & Weissman (1974) obtained a consistent estimator of Fβ  

based on serial (rank) correlation. Hussin (2004) compared various estimators of slope 

parameters for ULFR model using simulation approach. Six estimation techniques were 

discussed, which are the two-group method of Wald (1940), the three-group method, the 

weighted regression, Housner-Brennan’s method (Housner & Brennan, 1948), Durbin’s 

ranking method (Durbin, 1954), and maximum likelihood method ( ( )1λ = . The study 
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concluded that maximum likelihood method and the weighted regression are favorable 

compared to other methods. 

 

 

3.3 Coefficient of Determination for ULFR Model 

 It is the main objective of this study to propose a new image similarity measure 

that is able to overcome the three constraint areas. In view of the inadequacy of other 

regression models or correlations discussed in Section 3.1, this section begins with the 

ULFR model as defined in Equations (3.8) and (3.9) which fulfills the need to consider 

the reference image and distorted image where both images are subject to errors. The 

remaining task is to develop a correlation-based similarity measure via coefficient of 

determination (COD), which is appropriate for the purpose of 1-to-1 image comparison 

in Section 3.3.1.  

 

3.3.1 Derivation of the Coefficient of Determination 

In an ordinary simple linear regression (SL) analysis, we look at the COD as a 

measure of the variability in y explained by the regression model. The construction of 

the COD remains a good practice when fitting the ULFR model. We show the results of 

COD for ULFR in this section. 

 The Equations (3.8) and (3.9) can be rewritten as 

 i F F i iy Xα β ε= + +  for 1, 2, ,i n= …      (3.16) 

If we substitute Xi by ( )i ix δ− in Equation (3.16), then we have the expression 

 ( )i F F i i F iy x ε β δ= + + −α β  

+F F i ix V= +α β  
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where the errors of the model ( ) ( )i i F i i F F iV ε β δ y α β x= − = − + , for 1, 2, ,i n= … is a 

normally distributed random variable with zero mean and variance 2 2 2

ε F δσ + β σ . If ˆ
Fα  and 

ˆ
Fβ  are the estimates of Fα  and Fβ  respectively, then 

 ˆˆ ˆ ˆ( )i i i i F F iV y y y α β x= − = − + , for 1, 2, ,i n= …    (3.17) 

will be the residual of the model. From Anderson (1984) and Kendall & Stuart (1979) 

that the sum of squared distances of the observed points from the fitted line or the 

residual sum of squares (SSE) is given as: 
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We shall consider here that the ratio of the error variances is equal to one (λ = 1). For 

those cases when λ ≠ 1, we can always reduce this to the case of λ = 1 by dividing the 

observed values of y by 
1

2λ  (see e.g. Kendall & Stuart, 1979). Hence, we have 
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 In the same way as ordinary linear regression, we can now define the COD of 

the ULFR ( )2

FR  as the proportion of variation explained by the variable x, that is 
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where SSR is the regression sum of squares which can be derived as 
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We can summarise our proposed COD with the following results. 

 

Result 1. Let the ratio of the error variances be known and equals to one, 
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           ( )2 3ˆ ˆ ˆS S S SF yy xx F xy F xyβ β β⇔ − = −  

           ( ) ( )2ˆ ˆS S 1 SF yy xx F xyβ β⇔ − = −  

From the R.H.S. 
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3.3.2 Relationship Between 
2

FR  and 
2

SR  

Result 2. Let ˆ
sβ  and ˆ

Fβ  be the slope estimator for the simple linear regression 

and the ULFR, respectively. The corresponding CODs are 
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Proof.  From the regression sum of squares, we obtain 
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          ( )4 2 2 2S S S S S S Sxy xy xx yy xx xy xx− − >  

  ( )4 2S S S S S Sxy xy xx xx yy xx> + −  

2S S Sxy xx xy>  

Also from 

2

2 2
S

1 S S S
S S

xy

S xy xx yy

xx yy

R = ≤ ⇒ ≤ , this is a contradiction. Hence, we have 

2 2

S FR R≤ . 
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   (e)          (f) 

Figure 3.1: Simulation values for 2
SR  and 2

FR  with (a) n = 10, (b) n = 50, (c) n = 100, (d) n = 1000, (e) n 

= 5000, (f) n = 10000. 
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 A simulation work is carried out to study the Result 2. The numerical example 

of this result is given in Figures 3.1(a) – 3.1(f). To explain the relationship between 2

FR  

and 2

SR , the value of CODs are compared using different sample sizes, 

10, 50,100,1000, 5000,10000n = . For a given sample size, fifty samples were 

generated from a uniform distribution, each contains two random data sets ( ),i iy x . As 

an example, Figure 3.1(a) shows fifty values of COD obtained from simple linear 

regression and ULFR models with sample size 10n = . Figure 3.1(b) – Figure 3.1(f) 

show the same plot with different sample sizes. It is clearly shown that 2

FR  is always 

greater or equal to 2

SR . One interesting observation shown in Figure 3.1 is that both 2

FR  

and 2

SR  decreased when the sample size increased. 

Since 2

FR  is computed following the same method as 2

SR , some of the properties 

of 2

SR  may also remain for 2

FR . It is known that 2

SR  does not measure the 

appropriateness of the linear model (see e.g. Montgomery & Peck, 1992). This holds for 

2

FR  too. As an example, when a nonlinear model has a large 2

SR  value, it is obvious that 

2

FR  will also be large (see Result 2). More properties of 2

FR  are discussed in Chang et al. 

(2007) and will be further illustrated in Chapter 5 as a special case of multivariate 

version. 

 

 

3.4 Discussion 

 This chapter explained the reasons why most of the conventional regression 

models are not suitable for solving the three issues stated in Chapter 2. The 

development of ULFR models as a potential performance indicator was also discussed. 

This ULFR model allows the two reference image and distorted image are both subject 
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to errors, and hence provide a good solution to the need to consider an imperfect 

reference image. The derivation of COD for ULFR, labeled as 2

FR  was showed and it 

was used as an initial performance indicator in this study. The applications of 2

FR  will 

be discussed in the next chapters together with some selected ISMs. This ULFR model 

will be extended to a multidimensional version in the next chapter. 

  

 


